本系列的專文將以四篇 文章在2011年8月起分四期 刊出,各期主題分別如下, 一. 介紹自然輻射的主要來 源:宇宙線,及有關的地磁 場其相關的謠言。二. 介紹 與天文相關的謠言 : 馬雅 曆、 銀心連線、光子帶、X 行星等。三. 介紹與太陽微 中子相關的謠言:微中子、 太陽的核融合反應、太陽壽 命、微中子加熱地球、冰立 方等。四.介紹與太空天氣 相關的謠言:太陽表面活動 (黑子、閃焰、太陽風)、太 陽週期、太空天氣(太陽 風 暴、地磁風暴)、太陽風暴的 地面效應。

序言

預言與科學

探索未知與未來是推動人類文明進步的原動力,預言或者科學都是這種動力產生的成果。在人類還是懵懂未明的時代,人們只能依賴以往的經驗與知識來『合理』的解釋未知與預測未來;但是仍有許多無法理解的層面,就只能托詞為『神』的旨意。

在人類的絕大部分歷史中,這個『理(自然)』與『神』的界線常常是模糊不清的。在古代,預言與科學並沒有明確的區分。例如17世紀中期之前,占星術與天文學都一直在歐洲的大學中傳授。實證主義出現後,人類的經驗與知識不斷地相互檢驗,逐漸演變成為一個符合邏輯關係的知識系統,也就是科學。慢慢地,不符合邏輯關係的就被排除在外,變成『非科學』或『偽科學』。現代人可以根據科學原理解釋未知或預測未來;未來是否符合預測,又變成可以檢驗的根據。科學因此形成可信賴與可預測的學問。

即便科學昌明的現代,宗教仍是撫慰人心的有效方式。即使不 是虔誠的信徒,許多人心中仍有天或神的存在。天意或神意永遠是 凡人無法預知的,眾多的偽科學便能以其似是而非的理論,做出各

種預測。許多的預測就化身成為傳達神意的預言,或者是毫無科學根據的謠言。

預言就像所有的擲骰子實驗一樣,只要不斷 嘗試,總有一次會對!人們就會記得對的一次, 並且以「心誠則靈」、「機緣未到」等理由忽略 眾多失敗的嘗試。科學預測只要錯一次,就會 正錯誤的理論;而預言卻是只要對一次,就會被 傳頌千里。這種統計的錯誤,讓許多人以為真的 有預言成功的案例與『預言大師』,偽科學也因 此得以繼續流傳。

世界末日預言

世界末日(Doomsday、Judgement day)預言起源於基督教的神話,上帝在毀滅地球之前,重回人間解救信徒。但是何時是末日卻沒有明確的記載。各種教派、神學者,各有自己的解讀。一個預言不準,隔幾年就會有新的預言出現。

東方宗教或民族中並無類似神話。但16世紀以來,西方的思想隨著強勢武力與經濟入侵東方。由於時代久遠,末日的想法已經超越宗教隔閡。許多人都會把人為的社會亂象與自然災變當成是末日的預警。不論東西方,上自宗教大師、中到政客、下至騙子,都樂得以末日為題,吸收更多的信徒。末日之説已經成為一種現代流行文化。

2012末日預言

在上個世紀的最後數年裡,西方盛傳著千禧末日預言。除了一些電腦程式需要修正外,地球上並未出現任何大災難。電腦的千禧蟲,是人為的疏漏,與宗教的末日預言無關。西元2000年安然渡過了,世界末日預言他隨之煙消塵沒了人大陽型之012年馬雅曆終止的題材,借著新太陽週期啓、與全球暖化議題結合,創造出新的2012末日預言。這一次搭配了更多的科學素材,例如太陽風暴、微中子等似懂非懂的內容。在八卦

作家的催生、媒體不斷地炒作、與科幻電影的強力煽動下,2012末日彷彿是真的要降臨世間了! 2012末日儼然成為一股強大的流行風潮。

科與幻

為了釐清『科』與『幻』,本系列的專文 將針對這些方向,一一剖析2012末日預言的許多 疑點,將以四篇文章在2011與2012年的「臺北星 空」分四期刊出。本期為第一篇文章,將搭配日 本地震議題介紹自然輻射的主要來源:宇宙線, 及有關的地磁場其相關的謠言。同時也配合宇宙 線發現一百週年紀念。十一月份的第二篇會配合 『日環食』特輯,介紹與天文相關的謠言:馬 雅曆、 銀心連線、光子帶、X行星等。2012年二 月份介紹與太陽微中子相關的謠言:微中子、太 陽的核融合反應、太陽壽命、微中子加熱地球、 冰立方等。最後一篇將於傳說末日發生的五月出 版,介紹與太空天氣相關的謠言:太陽表面活動 (黑子、閃焰、太陽風)、太陽週期、太空天氣(太 陽 風暴、地磁風暴)、太陽風暴的地面效應。在 讀完這幾篇後,讀者不但可以安心迎接2012年, 不再擔心世界末日,還可以認識這裡面許多有趣 的科學。

破解 2012末日預言專輯*4-1*

天外飛來的輻射

1.引言

2011年3月11日在日本東部發生規模9的超級大地震,引發海嘯破壞了福島核電廠的冷卻系統,爐心溫度升高,最後引起氫氣爆炸,將廠房內具有輻射性的物質隨著爆炸,逸散到大氣中形成輻射塵。接著又有廠房內內有壓,也不可以有一個大平洋[1]。大眾害怕輻射會對生物產生致病病。大眾害怕輻射會對生物產生致癌害,連日本食品、臺灣東部捕獲的魚類都是與大氣無需恐慌。政府單位在宣導時都不斷圍之內,其實臺灣的輻射值都在「自然輻射」範圍之內,以下上輻射了。

不過這自然輻射到底是什麼?本文將解開這 疑問,並且發現這個來源竟然跟天體的一個劇烈 活動有關係!第二節首先介紹輻射是什麼?哪些 輻射源?輻射怎麼造成傷害?臺灣的輻射劑量是 多少?第三節接下來認識地球防護這些天外飛 的輻射的「金鐘罩」,還有萬一「金鐘罩」沒有 了會怎樣?第四節對坊間的一些流言作澄清。最 後一節再回顧自然輻射與天體活動的關係。

2 自然輻射與其來源

2.1 甚麼是游離輻射

『輻』是輪子裡連接軸心與輪框的直條,例如腳踏車輪子的輻條。這種由中心往外發散的形式就稱為輻射。電磁波就是將能量往四面八方發射,因此也稱為電磁輻射。電磁波依頻率由低往高分成無線電波、微波、紅外線、可見光、紫外線、X射線、與γ射線。高頻電磁波則會將原子游離成電子與陽離子,所以紫外光、X射線、與γ射線另外稱為『游離輻射』。有致癌風險的是這種游離輻射。其他低頻的電磁波主要作用是加熱與電磁干擾,例如:可見光提供照明;紅外線、微波可加熱食物。

並不是所有輻射都是恐怖的致癌風險!

除了電磁輻射,還有帶電粒子也可以產生類似的游離作用。宇宙中也充滿著帶電粒子,例如:宇宙線與太陽風,這些高能的帶電粒子通過物質時也會經由電場游離物質,因此也是重要的游離輻射源。某些礦物或宇宙線是由不穩定元素組成,會釋放出 α (氦核 He^{2+})、 β (電子)、 γ 射線或中子;或者會從不穩定能階躍遷至穩定能階而放出X或 γ 射線。雖然中子本身不帶電,但容易與原子核反應,可使原子分裂或改變成放射性元素。因此放射性礦物與中子也都列入游離輻射源。游離輻射依來源可分成兩類型:自然的與人造的。表一列出這些可能的輻射來源、用途與作用形式。

2.2. 游離輻射的生理效應與劑量

游離輻射進入物質後,會經由一些反應釋放能量。最主要的作用是游離,將中性原子游離成電子與離子對,或是將分子的鍵結打斷。游離之後最可能的反應是電子與離子復合,能量釋放成熱量:熱雖然是物理性變化,但大量的熱輻射可能造成輻射灼傷。一般紅外線的灼傷發生在表層組織,游離輻射可能深入組織内部,造成不易治療的組織內灼傷。短期大量的輻射性灼傷,就不易治療,甚至因感染而死亡;但是這種狀況只有在核彈爆炸、或嚴重的核能災難才會發生。平常的自然輻射,只有微量的灼傷,組織容易修補,恢復正常。

游離作用也可能產生化學變化,分子被活化成離子(自由基),可能與其他物質重組成新化合物,改變了化學特性。另外極少部分高能量的粒子或中子可以產生核反應,例如將氮轉變為碳。這些化學變化可能破壞細胞組織或者DNA。當DNA重組時,由於雙螺旋結構具有複製的功能,多數可恢復原狀;但有少數可能會產生變異,造成基因突變;部分不正常的細胞大量孳生,可能變成腫瘤;部分無法存活,細胞會死亡,組織會再補充新的細胞。

輻射對人體健康 的影響取決於輻射釋放 的總能量、輻射種類及 受輻射的人體細胞種類 等。不同的輻射源釋放 能量的方式不同,即使 相同的能量對不同生理 組織的效果也不同。為 簡化這些複雜機制,一 般常用「等效吸收劑 量」(簡稱劑量)來表示輻 射對人體健康的影響, 以西弗(Sievert, Sv)為單 位,習慣上常用毫西弗 mSv = 10⁻³ Sv, 或微西弗 $\mu Sv = 10^{-6} Sv [3] \circ$

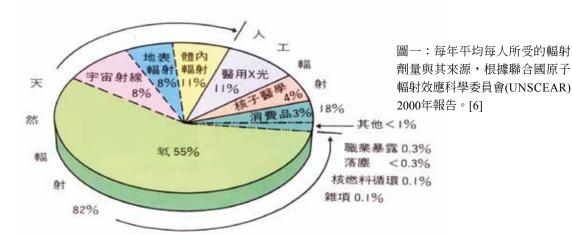
輻射強度則是每單位時間內組織所吸收的等效劑量。短期的輻射強度常用微西弗每小時 (μS v/h):長期的輻射強度常用毫西弗每年(mS v/y)。輻射劑量就像是水量(多少公升),而輻射強度就像水的流量(每分鐘多少公升)。水量是流量乘以水

龍頭打開的時間。同理,輻射強度必須對時間積分才是輻射劑量。

2.3. 輻射劑量

在沒有特定核災意外的時候,全球平均每人每年所受的輻射劑量約為2.93 mSv,其中自然輻射約為2.4 mSv (82%),人造輻射約為0.53 mSv (18%),其分佈如圖一所示。臺灣每人每年平均自然輻射劑量為2mSv(71%),人造輻射0.82mSv(29%)。請注意,許多人引用18%的人造輻射,這是指全球平均值,跟臺灣人的真正劑量(29%)有不少差異。

對於一般人,法定的輻射劑量標準值是每年 1 mSv,這數字是以自然輻射的一半作為參考。對 於與輻射相關的職業人員(核電廠員工、空中飛航


			T
分類	來源		輻射形式
自然	生物體		鉀 ⁴⁰ K、碳 ¹⁴ C
	地殼		放射性礦物鈾(U)、鐳(Ra)與釷(Th) 等與氡氣 $(Rn): \alpha \ \ \beta \ \ \gamma$ 射線
	宇宙線	大氣	次級宇宙線(電子e˙、 緲子μ⁺)、 ¹⁴ C、中子
		太陽	太陽風(電子e 、 質子p+)
		銀河	宇宙線(電子 e^- 、質子 p^+ 、氦核 He^{2+} 、其他重核子)、 γ 射線
人造	醫療		X光攝影與斷層掃描(CT): X射線 癌症治療:結 60 Co (γ 射線);正子治療使用正子 (e ⁺ positron)與其產生的 γ 射線;質子或重離子 治療術使用帶電粒子(質子或重離子)。 β 輻射源 的治療 (131 I, 89 Sr, 153 Sm···) 體內造影術用的放射性示蹤劑:碘 123 I, 125 I、鎝 99m Tc、蛇 201 Tl、鎵 67 Ga 正電子發射斷層成像術 (PET): 18 F, 11 C, 15 O
	保健		醫療用品、食品的殺菌、農業的基因改造: γ 射線
	安檢		X光掃描、X光可做材料的非破壞性檢查
	民生用品		菸霧偵測器、夜間螢光物(²²⁶ Ra)、陰極射線管的 顯示器電視(β)、高空飛行等
	核武器		
	核能設施意外		輻射落塵、燃料棒、輻射汙染物: α 、 β 、 γ 射線、中子

表一:游離輻射的分類、來源及個別形式[部分來源2]。

人員、太空人等),規定五年的總劑量不得超過100 mSv,單一事件的總劑量不得超過50 mSv [4]。這是根據高輻射劑量的致癌率,推測30年累積劑量約增加0.5%的致癌可能性而規定。相對於臺灣人約有28%會染上癌症而死亡[5],由這些輻射所增加的風險都算是微量。實際上,並沒有長期低劑量(每年250 mSv以下)的輻射傷害的醫學根據。長期低劑量的生理效應是好是壞,醫學界仍無定論(詳見4.4節)。

2.4. 人造輻射劑量

人造輻射以醫療用X光及核子醫學佔最大比率,且因人因時而有很大差異。美國人的平均醫療用輻射約為0.54 mSv/年,其他民生消費品、輻射落

塵、核廢料與其他等約為0.12 mSv/年;合計人造輻射劑量約0.66 mSv/年,約佔美國人每年總劑量的18%。臺灣的人造輻射劑量卻高達0.82mSv/年,主要源自醫療診斷所造成的劑量就佔0.81 mSv/年,明顯高於國際平均值。根據筆者在臺灣與美國的癌症治療經驗,臺灣醫師或病患都有濫用健保資源,多做無謂檢查的習性,因此人造輻射劑量遠高於美國人,使得臺灣人的人造輻射的比率高達29%。

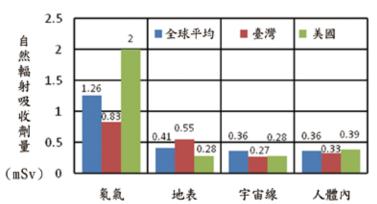
圖三顯示一些醫療用的輻射的劑量。一次胸部電腦斷層掃描的劑量高達7mSv,是七年的法定劑量,是一般胸部X光攝影的350倍!國人應該更審慎地使用這些醫療輻射,避免過度使用,造成輻射劑量過高與浪費醫療資源。

2.5. 自然輻射劑量

自然輻射隨時都有、隨處都有,人類無法逃脫自然輻射,圖二比較全球平均、美國、與臺灣的輻射來源與劑量 [6]。欲知現在全臺的輻射強度,可到全國輻射監測網查詢[7]。表一中列出自然輻射有三類來源,圖二將地殼又分開成氢氣與地表兩種。分析臺灣人的輻射來源,前兩名禍首是氢氣與地表,而其最大來源就是保護我們的建築物以及地表釋放的氦氣與其他放射性!美國人習慣住在有地下室的房屋,地下室容易累積地殼釋放出來的氦氣。臺灣的住家多為樓房,住在地下空間的人非常少,為何臺灣的氦氣也這麼嚴重呢?原因是臺灣的建築使用大量的礦物製品,包括磁磚、鋼筋、水泥與石材。臺灣還有一個世界第一名:平均每人的水泥使用量!其實這些礦物

製品兒不了會有鈾鐳針等的放射性礦物,其衰變產生的氢氣就會瀰漫在室内!。貼滿磁磚與花崗石的房子,看起來富麗堂皇,但卻是製造氢氣的溫床[2]。人體會吸入氦氣,也會將其排出體外。但若在此時間內氦氣產生衰變,其α粒子就可能直接攻擊肺部與血管附近的組織,因此氦氣是肺癌的主要禍首之一。這兩項因素其實是可以避免的,多使用木製建材,就可以減少礦物產生的輻射。

第三名是體内的⁴⁰K,因為天然的鉀就含有 0.0118%的放射性⁴⁰K,而鉀與鈉是調節水分進出細 胞的重要成份,身體不能沒有鉀。最後一項是宇宙 線,這是唯一來自地球以外的輻射源。體内的輻射 與宇宙線這兩項都是無法避免的自然輻射。

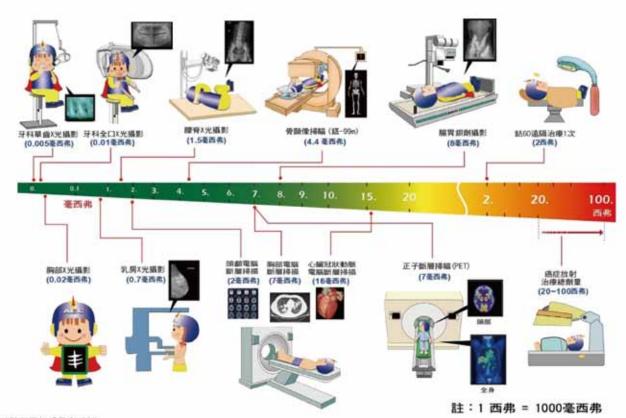

宇宙線是來自銀河的輻射源,從發現至今年恰好是一百週年,本期另一篇專文「宇宙線的世紀探索」對宇宙線的發現及其與現代科學的關係有詳盡的解說[8]。表一將宇宙線分成大氣中的次級宇宙線、來自太陽的太陽風與太陽風暴、與來自銀河的宇宙線。太陽風與太陽風暴是許多2012末日預言的情節,將在下一期討論。以下只談宇宙線。

3. 宇宙線的作用

3.1. 地球的防護罩

太空中宇宙線的通量約每平方公分每秒1~4個,與太陽的黑子週期有關。如此強的輻射,地球上如何繁衍出數十億年的生命呢?多虧地球有兩個「防護罩」。第一個防護罩是地磁場,由於宇宙線與太陽風都是帶電粒子,會被磁場偏轉。比較低能

10 天文館期刊 第五十三期


圖二:比較全球平均、美國、與台灣的其輻射來源,根據聯合國原子輻射效應科學委員會(UNSCEAR) 2000年報告。[6]

量的粒子就無法進入特定區域。而宇宙線能譜的特徵就是能量越低通量越高。因此地磁場擋掉大多數的宇宙線,此阻擋能力與地磁緯度有關[8]。越靠近赤道處,宇宙線的能量要更高才能抵達地面。因此地面上次級宇宙線的輻射就越弱;靠近磁極處宇宙線的輻射最強。這是臺灣的宇宙線輻射劑量比全球平均值低的原因。

即使有磁場屏蔽,仍有許多高能粒子可穿越磁場,這時就遇

上第二個防護罩:大氣層。除了微中 子以外,所有原始宇宙線都被大氣層 擋住,宇宙線跟大氣不斷碰撞,損失 的能量產生許多次級粒子。最後連次 級粒子也會損失能量而被大氣吸收(這 過程稱為簇射[10])。能量越高的宇宙 線就可以穿越到越低的海拔高度。這 些次級粒子,通稱為次級宇宙線,主 要成分是電子與緲子(muon)。電子容 易被屋頂擋住,緲子的穿透力很強。 臺北天文館三樓有個閃光箱,就是利 用緲子通過時,游離附近的氣體。氣 體離子與電子迅速被帶高電壓的導線 吸走;瞬間的導電,形成火花。將火 花相連就可看到緲子的軌跡。假如在 閃光箱加上磁場,還可以觀察到帶正 負電荷的緲子,向不同方向彎曲。偶 而還可以看到一分為二的軌跡,這是 緲子產生另一組次級粒子的反應。

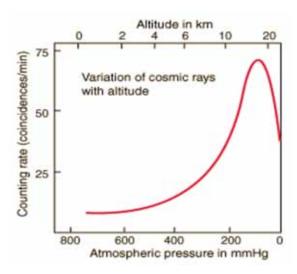
醫療游離輻射劑量比較圖

行政院原子能委員會 製作

圖三:醫療用的游離輻射劑量比較圖,圖來自原子能委員會網站[9]。

3.2. 大氣中的輻射強度

次級宇宙線隨高度的分佈與空氣密度及簇射的 形成有關。同一地區,約隨高度而增加,到了20公 里高,游離粒子數到達最大值,然後因為空氣密度 快速減少,所以游離粒子數也跟著減少,圖六顯示 此關係[11]。這個關係圖上的數字與高點的位置與 太陽週期及地磁緯度有關。


從圖四可發現在10公里高空,游離粒子數約為地面的 $3\sim4$ 倍。由於次級宇宙線的平均能量也比較高,實際的輻射強度的倍數會更高。海平面宇宙線的輻射強度約 $0.03\sim0.04~\mu Sv/h$:在高度約10公里高,輻射強度約 $2\sim10\mu Sv/h$ [12]:在400公里高的太空站外強度約54~m Sv/h。由此可知大氣層削弱了宇宙線的輻射強度約1500倍。

3.3. 都是宇宙線惹的禍

再來看一個與民生有關的數據。一趟臺灣來回歐洲或美洲的國際航線約12 hr,累積的輻射劑量約60~120μSv (依航線而異,靠近極區的航線的劑量較大)。按照一般人一年法定劑量1 mSv來算,則一年約可飛行五次來回旅程。空中服務人員的法定劑量約是每年20 mSv [4] ,因此其飛行時數受到嚴格的管控。

太空人的職業風險最大因素就是起飛與降落的失敗,其次就是太空輻射。太空人與人造衛星在太空中則受到宇宙線、太陽風與輻射層的作用。1972年4月及11月的阿波羅登月任務,每次任務太空人的輻射劑量高達130~910 mSv,若是遇上當年8月的太陽風暴,這些太空人可能會因急性輻射傷害而死亡[13]。美國對太空人的限制是依年齡規定總劑量最大值,例如35歲男性是2.50 Sv,女性是1.75 Sv[14]。這些劑量對應的終生致癌機率約增加3%。因此太空人的職業壽命(飛行時數)跟職業運動員一樣短暫。。

人類登陸火星已經講很久了,現在也有火箭足以發射登陸火星的太空船,但是無法克服18個月飛行與在火星一年所受到高達2.26Sv的太空輻射,已經接近1~4 Sv的導致血癌的劑量[15]。

圖四:游離粒子數(縱軸)隨大氣壓力(橫軸下標)或 海拔高度(橫軸上標)的關係[11]。

4. 流言澄清

4.1. 福島核災落塵超標上千倍?

福島核電廠氫氣爆炸數次,媒體數度傳出輻射超標上千倍,引起大衆人心惶惶!其實都是新聞記者的錯!正確說法是:爆炸時的最大輻射「強度」超過1000 mSv/年!看起來像是法定「劑量」每年1 mSv的一千倍!但是爆炸持續的時間遠小於一年,真正的總劑量是強度與時間的積分,簡單的估算最大值1000mSv/年乘上爆發時間例如5分鐘,這只有0.01mSv,是一年法定劑量的1%而已,而非一千倍!所以是記者報導時把強度當成劑量了!

即使以最大的爆炸,福島四號機在3/15~5:45 ~ 11:16的持續爆發期間,最大強度約為12~mSv/小時,估計總劑量最大值約是12~mSv/小時 × 5.5小時 = 66~mSv,考慮不是全程都在最高劑量,實際總劑量約只有40~50mSv。此劑量絕對不是超標干倍,也還在聯合國原子輻射效應科學委員會定義的低劑量範圍之内 (< 100~mSv)。這些福島勇士們,並非全程連續在事故現場,因此他們累積的劑量也在規定的單一事件50~mSv以内。

即使輻射塵飄到臺灣,由於距離遙遠,擴散作 用使其輻射塵分佈到廣大區域,中途也會有許多下 沉到海面,輻射的強度與劑量都會下降很多。臺灣 的民衆其實不需要驚慌!假如這麼怕輻射的話,應該多花心思在減少家庭內的輻射源(磁磚、石材)與 醫療的輻射。

4.2. 外星人與宇宙線

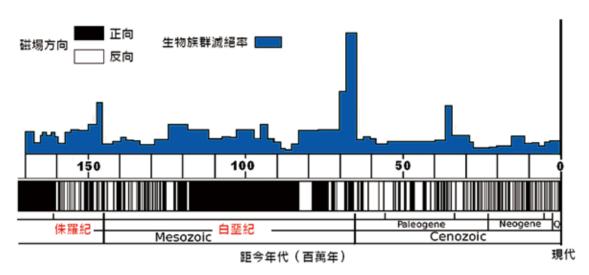
從上面所說的宇宙線強度可以推測,離開地球的磁場與大氣的雙重金鐘罩後,就要面對強烈的宇宙線輻射的致癌劑量!假如真的有外星人要做長途星際旅行到地球來訪問,這趟旅程絕對會是自尋死路。因此飛碟與外星人的傳說應該都是以訛傳訛的流言!

相信飛碟與外星人存在的人一定會說:外星人若有足夠的文明來訪問地球,當然也應該知道銀河裡到底有多毒!也會知道該如何保護自己,只是現代地球人還不知道而已!反過來說,假如有一天人類真的得移民外星時,宇宙線科學家絕對是「逃生方舟」中不可或缺的專家!

4.3. 登山有輻射超標的危險

玉山上的宇宙輻射線強度約為平地的三倍左右,接近一年法定劑量的1 mSv。有人就認為登山具有輻射超標的危險!最簡單的方式是跟幾個自然輻射劑量很高的地區做比較。學者發現世界上有數個天然輻射比平均值高4-5倍的地區,其癌症發生率或不孕率或死亡率卻比較低[16]。因此可以確定玉山頂

不會比海平面更危險!加上山上空氣清新汙染少,應該是比較健康的環境,登山絕對是健康的運動。


4.4. 自然輻射有害還是有益?

第二節提到游離輻射可能造成基因突變。惡性的突變產生腫瘤,可能致死,其不良基因就不會遺傳下來。良性的突變使子代與母代產生變異,其基因便能流傳下來。對於生物組織或是整個族群,都有汰弱留強的作用。所以自然輻射有促進基因演變,增加物種多元化的功能。對於不幸的少數會罹癌致死,輻射當然是有害的;但從族群而言,這種輻射是有益於族群生存。

同樣的道理,地球上的生命從單細胞生物開始到現在,已經受到這些低強度的自然輻射照射數十億年了,生物會因自然輻射而嚴重到致死的,其基因都已經消失了!留下來的我們,自有一套因應機制。有一派學者支持「輻射激效學說」,認為低劑量輻射可加速細胞的汰舊換新、提升免疫力、與降低癌症罹患率等[17, 18, 19]。這些學者也提出許多統計數據與實驗的證據來支持此學說,醫學界對此仍無定論。官方組織仍採用比較保守的態度,也不建議民衆自行採用號稱具有輻射激效功能的產品。

4.5. 地磁反轉引起牛物大滅絕?

最近有流言提到地球磁場正在減弱中,甚至

圖五:地磁反轉與生物族群滅絕的對照關係。橫軸是距今年代,單位是百萬年。黑色區是正向磁場 (與現在的方向一致),白色區是反向磁場。第五次大滅絕是在6500萬年前白堊紀末期。從此圖即可 發現大滅絕與地磁反轉無關。[資料來自20,21]

可能產生地磁反轉。地球的磁場是主要的防護罩, 萬一沒有磁場的保護,大量的宇宙線可能會傷害生 物,引起生物大滅絶。這個憂慮並非不可能出現。 不過地球的歷史上已經發生過數百次了[20],對照 這些考古紀錄就可以了解可能的後果了。

首先來檢視地磁場是否正在反轉,根據以往 紀錄(圖五),地磁穩定的時期或反轉的週期都不固 定,反轉歷時約五千年[22]。自1590年到1840年之 間地磁場的強度幾乎不變,只憑1840年至今減少的 10%的變化,不足以證實地磁反轉,更不會在我們 有生之年反轉磁場。生物大滅絶在地球歷史上發生 過五次[21],但與地磁反轉出現的時間並不一致。 地磁反轉的次數比生物大滅絕的次數高出數十倍, 兩者可能關連性不大!最近的兩次的地磁反轉約在 90及78萬年前的新生代[20],人類的祖先直立猿人 經歷了這兩次反轉事件,人類繼續生存下來了。所 以可以推論地磁反轉應該不可能毀滅地球生物。

不必看歷史,現在地球上就在進行實驗。靠近 磁極區,宇宙線與太陽風只受大氣層的阻擋,此狀 况與地磁消失的情況類似。南北極區並沒有因為宇 宙線的輻射較強而使生物減少,在夏季時還會因為 太陽提供的能量多而吸引大量生物聚集。由這個每 年都發生的事實,以及上一段的考古紀錄,可以推 測即使沒有地磁場、只剩大氣層的保護,地球的生 命也能存活下來。

4.6. 超新星爆炸毁滅地球

今年有個澳洲天文學家Brad Carter接受訪問時 提到紅巨星參宿四會爆發成為超新星[23],時間從 現在開始、最遲會在100萬年内。爆發開始的一星 期裡,連白天都可以看到超新星。這一番話被記者 渲染成為『第二個太陽』與『最快明年』。超新星 爆炸會使宇宙線大量增加,是否會毀滅地球生命 呢?雖然Carter說不會對地球有影響,但是堅持末 世論的人卻硬是解釋成2012末日的另一種可能!

此種災難很可能已經發生過了。Ellis & Schramm指出距今2.25億年前曾有過一次超新星爆 發,離地球不足30光年處,可能導致了全球的大 規模生物滅絶[24]。所以這種危險不是不可能!危 險的確存在,但實際機率就難以判斷。首先銀河 系產生超新星的頻率約百年一次,相對於上一次
 2.25億年前,就可以猜出大毀滅機率很低。另一方 面,即使爆炸了,宇宙線也不會跟可見光一樣朝 著地球直射而來。因為宇宙線是帶電粒子,會受 星際磁場偏轉,使其傳播方式趨近於擴散。從某 些宇宙線裡放射性同位素分析,宇宙線約在銀河 系内遊蕩了1~3千萬年[8],所以遠處的超新星爆炸 不會對地球產生立即的危險。我們現在觀測的宇 宙線其實是累積了數十萬個超新星爆炸製造出來 的宇宙線,經過擴散分配到廣大的銀河系,所以 宇宙線的通量就低很多。不過若是鄰近的超新星 爆炸了,傷害的機率就大幅提高,距離近相對地 宇宙線通量較大,且傳播時間也變短了。麻煩是 連受訪問的Carter都說不準何時會爆炸,因為百萬 年的誤差太大了。

我們無法阻擋星球爆炸,只能被動地自求多福 了。幸虧還有大氣層可以把宇宙線擋住。97%的宇 宙線的能量在10¹⁰ eV以下,這些在高層大氣就被擋 住了。可以穿透到地面的宇宙線能量需在10¹⁴ eV以 上,只佔了約0.01%的比率。但是超新星爆震波要 加速宇宙線到此能量也需要很長的時間,所以超新 星剛產生時其宇宙線的平均能量更低,更容易被大 氣層阻擋。由此推測,若是有鄰近的超新星爆炸, 太空中的輻射量可能會大量增加,但是地面的輻射 增加量非常有限。比較可能的傷害是大量的紫外線 破壞臭氧,使得地面的紫外線強度增加。

4.7. LHC造成迷你黑洞吞噬地球

霍金(Steven Hawkings)曾提出理論說微型黑洞 可能存在。德國生化學家羅斯勒(Otto Rossler)為 首的一個團體,聲稱大強子對撞機(LHC)的實驗可 能會在加速器中產生「微型黑洞」(MBH)或者 「玻色新星」(Bosenova),黑洞開始吞噬地球。 但是霍金也說質量越小的黑洞越可能產生霍金輻射 (Hawking radiation) 蒸發成能量。有個簡單的事 實可以說明: LHC的能量換算成宇宙線約10¹⁷ eV。 全球每一秒約有60萬個能量大於10¹⁷ eV的宇宙線打 到地球。而地球已經存活了45億年!假如LHC真的 可以產生微型黑洞吞沒地球,那我們現在就不可能 存在了!

天文館期刊 第五十三期

5. 回顧

自然界的輻射有天地人三種:從生物體內的, 有來自地殼的放射性礦物,以及來自銀河的宇宙 線。其實這三個都跟超新星爆炸有關!恆星從氫製 造出氦以上的元素,超新星爆炸時又產生超鐵元 素。沒有超新星爆炸,就沒有放射性礦物!這些星 系物質結合成為我們所在的太陽系、地球與生物。 這些星系物質也在超新星的暴震波被加速成為宇宙 線[8]。所以說這三種自然輻射都與超新星爆炸有 關!雖然宇宙線可造成輻射傷害,但是地磁場與大 氣層保護著地球的生命,微量的宇宙線輻射甚至創 造出更多元的生命,卻也將生命拘束在地球上。宇 宙線與超新星,多巧妙的組合!

參考資料:

1.蔡明達編譯,日本福島核電廠事故報告,國 科會科技簡訊: http://stn.nsc.gov.tw/view_detail. asp?doc_uid=1000422019 http://stn.nsc.gov.tw/view_detail.asp?doc_uid=1000422020

http://stn.nsc.gov.tw/view_detail.asp?doc_uid=1000422021

- 2. 張欽然,游離輻射,教育部安全衛生教育中心 安全衛生通識課程
- 3. 黃惠敏,從日本福島核廠災變淺談輻射危險之 度量,國科會科技簡訊: http://stn.nsc.gov.tw/view_ detail.asp?doc_uid=1000401001&kind_no=A01
- 4. 國際放射防護委員會(ICRP)第60號報告規定: 職業暴露的劑量限值5年總和不能超過100 mSv,期中一年最高不得超過50 mSv。
- 5. 衛生署公佈民國98年死亡人數142,240人,死於 癌症39,919人,比率是28%。
- 6. 原子科學教育網http://www.nucl.nthu.edu.tw/nu_info/rad/healthy/healthy1w.rad.html
- 7. 全國輻射監測網http://203.69.102.242/ gammadetect.php
- 8. 黃明輝,宇宙線的世紀探索,臺北星空,本期,(2011)
- 9. 原子能委員會網站 http://www.aec.gov.tw/www/service/other/index_03_1.php

- 10. 黃明輝,(2009/8),極高能宇宙線望遠鏡的發展與近況,臺北星空(天文館期刊),45: 6-14
 - 11. G. Pfotzer, Z. Physik ,102: 23 (1936).
- 12. L.W. Townsend, Radiation exposures of aircrew in high altitude flight, J. Radiol. Prot. 21: 5-8, (2001)
- 13. J. L. Parsons and L.W. Townsend, Interplanetary Crew Dose Rates for the August 1972 Solar Particle Event, Radiation Research 153(6):729-733. (2000)
- 14. http://srag-nt.jsc.nasa.gov/RadDocs/TM104782/techmemo.htm
- 15. Wallace Friedberg, Health aspects of radiation exposure on a simulated mission to Mars, Radioactivity in the Environment, 7: 894, (2005)
- 16. CRIEPI 日本電力中央研究所 www.criepi. denken.or.jp
- 17. 輻射激效創始論文: T.D. Luckey, Physiological benefits from low levels of ionizing radiation, Health Phyhs, 43, 771-789, (1982)
- 18. 近代研究綜合探討PCCRP http://www.pccrp.org/docs/PCCRP%20Section%20VII.pdf
- 19. 汪志偉,輻射激效,臺北馬偕醫院演講 (5/10/2008);
 - 20. 維基百科 zh.wikipedia.org/zh-tw/地磁反轉
- 21. Raup, D. & Sepkoski, J.. Mass extinctions in the marine fossil record. Science. 1982, 215: 1501–1503; 維基百科 zh.wikipedia.org/zh-tw/生物集群滅絶
- 22. David Gubbins, Fall in Earth's Magnetic Field Is Erratic, Science, 312: 900(5/12/2006)
- 23. http://www.news.com.au/technology/sci-tech/betelgeuse-not-likely-to-explode-in-2012/story-fn5fsgyc-1225992757166
- 24. Ellis & Schramm, Proc. National Academy of Science, 92:235, 1995

黃明輝副教授:任教於國立聯合大學 能源工程 學系及 共同教學中心物理組,國立台灣大學 梁次震宇宙學與粒子天文物理中心

E-mail: mahuang@nuu.edu.tw