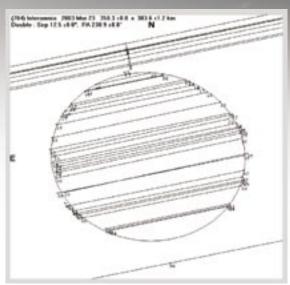
小型望遠鏡觀天術


文/ 顏易程

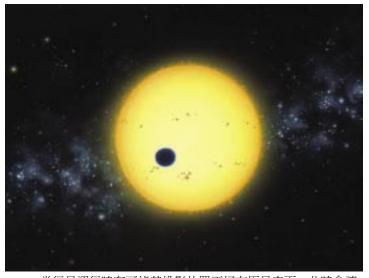
現今小型望遠鏡的天文攝影技術已經相當成熟,品質達到研究水準

上記作著天文望遠鏡望向天空,看著宇宙間各 式各樣的天體,思考著它們不同的生命歷程,總讓人們相當嚮往。藉由天文觀測所得到的訊息,可以讓我們更了解宇宙的組成與歷史,這就好像考古學家拿著鎚子細心地挖掘出以往不為人知,但確實存在的過去。天文觀測發展至今已經有長足的進步,以往專業大型天文台才能做到的觀測,在現今進步的科技產品輔助下,也可以利用小型望遠鏡完成,業餘天文同好們利用自己的望遠鏡為天上的天體記錄其寶貴的訊息,讓我們知道了,原來小型天文望遠鏡除了讓我們親身觀賞天體美麗的姿態以外,還能更進一步利用這些強而有力的工具去更進一步窺探它們的本質。 我開始踏入天文的領域時,是對天文觀測 狂熱的著迷,透過肉眼觀察與無數的攝影經驗, 漸漸知道天上有很多種類的天體,各自有不同的 特性。但是後來發現望遠鏡的用途應該不只限於 拍攝出美麗的影像,從幾次的演講與國外的刊物 發表中才知道,原來早就有職業與業餘天文學家 為小型天文望遠鏡量身定做了許多觀測方法,藉 以研究各種不同的天體,且有些方法已在一些人 家裡的"後院"行之有年,為天文研究做出了貢 獻,經由這篇文章,希望可以把一些我覺得不錯 的目標與其觀測方法介紹給手上有小型望遠鏡的 朋友,讓有志發揮望遠鏡威力的人可以有機會一 展身手。

掩星觀測最重要的就是時間,另外就是大量的觀 測點,許多不同位置的掩星時間的資料,可以讓 我們即使不直接飛到小行星附近觀察,也可以描 繪出小行星的形狀。

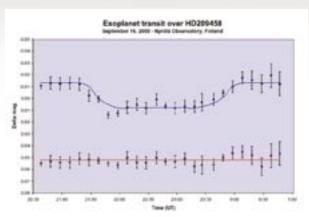
壹、小行星掩星

自從彗星撞地球與世界末日等電影名作問世後,全世界的人們開始特別注意到星際間天體 威脅地球的可能性,目前已經有數個專門的巡天計劃觀測這些威脅,每天盯著廣大的天區,尋找 在太陽系中漂移的小行星。藉由小行星的觀測可以讓我們更了解太陽系的成員,並間接推估出其 形成的歷史、地球的形成乃至於生命的誕生與演化,所以小行星的研究可說相當重要。


經由許多大型望遠鏡的觀測, 太空中有數以萬計的小行星被發現, 估計這些還只是冰山一角,有更多是 我們尚未發現的,利用小行星反射太 陽光的特性觀測並不容易,原因是 因為小行星通常體積不大,距離我們 又遠,通常只有具大口徑的天愈, 到直接觀測來自小行星的光線。小型 望遠鏡的集光力有限,無法像大型 望遠鏡的集光力有限,無法像大型 望遠鏡的集光力有限,無法像 一般觀測20等以下的天體,但是除 了直接觀測其光線,還可以利用之的 影子來觀測,也就是目前越來越 門的小行星掩星觀測,由於在地球上不 同地區的觀測所發生的時間點不同, 可以藉此了解小行星的影子,也就是小行星的形狀,對於此類天體的研究很有幫助,目前多次的觀測結果也展現成果,也吸引更多同好投入。目前主要是在研究小行星的形狀,若有更密集的觀測,甚至有可能因為掩星事件而發現新的小行星或庫伯帶天體。

貳、系外行星

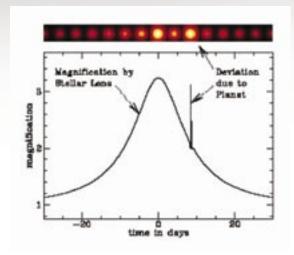
到底有沒有外星人?這個問題一直引起大 衆的討論,也因此搜索太陽系以外的類似系統成 為一個很好的問題解決方向。但是太陽系以外的 行星以目前我們所擁有的觀測儀器,幾乎沒有辦 法直接觀測到,建置更大型的天文台困難度也太 高,是不是有什麼方法是可以利用現有的觀測儀 器來探測到系外行星呢?答案是肯定的!雖然說 系外行星不是無法讓望遠鏡解析出來,就是太過 於黯淡,但是從我們現有的天文物理經驗與知識 可以知道行星系統所會展現的特性。


一、凌星現象

大家應該都還記得不久前才陸續發生的水 星凌日與金星凌日吧?沒錯,若某個恆星具有行 星系統,就有可能會發生行星凌星的現象,發生 凌星事件時,恆星就會發生光度變暗的狀況,從

當行星運行時有可能其投影位置正好在恆星表面,此時會讓觀測到的光度暫時下降

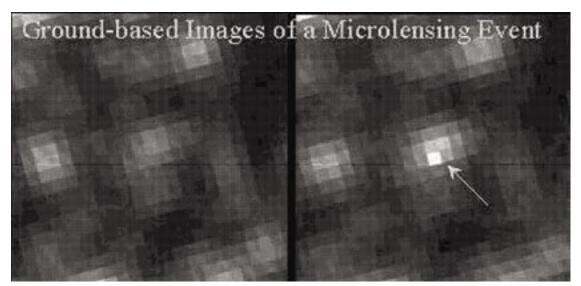
光度變化的程度,就可以推估出行星的大小、質量、軌道等等訊息,間接地知道這個行星是不是與地球類似。目前已經從幾個凌星事件發現到系外行星,而且只要恆星亮且行星體積夠大甚至10公分口徑的望遠鏡一樣可以偵測到凌星的訊息,是很適合小型望遠鏡觀測的目標。

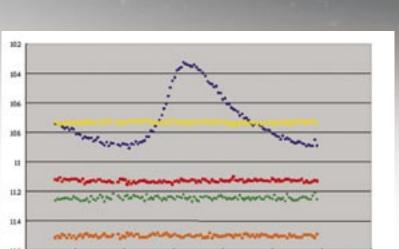


恆星光度變化曲線可能透露出其存在行星系統。

二、微重力透鏡

愛因斯坦告訴我們光線經過重力場附近會產生偏折,如果配合得當,甚至可以產生如凸透鏡聚光的特性,小時候玩過放大鏡點燃火柴的遊戲吧? 凸透鏡匯聚大面積的光線在一個小區域内時,那個區域就會變的很亮,若會聚太陽光線,甚至可讓白紙燃燒。行星具有相當質量時就會產生重力透鏡的現象,由於質量不大,產生的重力


透鏡輕微,所以稱為微重力透鏡。系外行星運行時,若在地球與此行星的連線方向後有背景天體時,就可能發生此天體的光線由於微重力透鏡影響而短暫變亮,搜尋這些閃光,也有可能讓我們探測到系外行星的存在。


恆星運行時背景天體可能會受微重力透鏡影響緩慢 增光,但是若這恆星具有行星系統,則其行星的微 重力透鏡效應也可能造成背景天體瞬間增亮。

參、變星

我們稱天上的星星叫做恆星,往往會讓人有種恆星在短時間內不會有變化的誤解,其實有些星星的光度是會在短時間內變化的,這些星我們就稱為變星,主要原因是恆星到了晚期時比較不穩定,常常會有規律性的光度改變,變星光度與

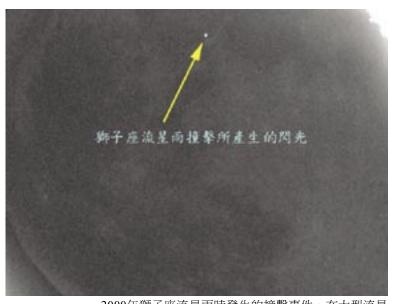
遠方天體受到微重力透鏡效應影響,造成短暫增光現象

師大地科平頂天文台量測變星(GP And)的光度曲線,四組水平的資料為參考星,利用較差光度可以計算出變星的光度變化。

245129L000 245129L000 245129L100 265129L120 245129L140 245129L140 245129L140

時間的關係所繪製出的曲線稱為光變曲線,從光 變曲線的形式可以推測變星的年齡、質量等等性 質,提供恆星結構的重要訊息。

小型望遠鏡的變星觀測結果一直受到相當的重視,主要原因是天文台的數量有限,不可能無時無刻觀測天上所有的變星,而小型天文望遠鏡為數衆多,補足了變星許多觀測時間,不管是目視、底片攝影、CCD攝影的資料都相當重要,這些觀測結果提供科學家們更精細的變星特性分


析資料,也開創了業餘與職業天文合作的良例,目前世界上最著名的變星組織AAVSO(http://www.aavso.org)接受世界各地大大小小望遠鏡的變星觀測結果,因此豐富的觀測資料建構出最具權威的變星資料庫,如果有任何的變星資料庫,如果有任何的變星資料,AAVSO會非常歡迎在其網站上傳區提供各地的觀測數據。

變星的觀測方法很多,只要可以分辨出變星亮度變化的方法都可以使用,所以無論是底片攝影、CCD攝影,甚至眼睛判斷都是可行的,但是不論是用什麼樣的觀測工具,都是用相同的方法量測變星的光度變化。在觀測變

星時,視野裡通常會有其它的恆星在,這些恆星 光度穩定,不會有什麼變化,因此就會被做為參 考的指標,稱為參考星,將不同時間觀測到變星 的亮度與這些參考星比較,就可以觀察到變星的 亮度隨著時間變化,這種利用週遭參考星比對目 標星的觀測方法稱為光度較差觀測,是最常用且 準確度高的方法,一般來說資料的時間間距越短 越好,可以看出較精細的光度變化,但是觀測器 材達到充足曝光量所需的曝光時間將會限制資料 點的時間間隔。

肆、月隕抗

月球可說是大家最熟悉的天體了,很多人都會以為,月球的地貌不會有變化,其實不然喔, 月球上所佈滿大大小小的坑洞,都是四十餘億年來小行星與彗星撞擊的傑作,雖然我們好像沒有 看過或聽說月球發生大規模撞擊事件,透過望遠 鏡的觀察,有時候還是會發現一些新的坑洞,難 道說這些坑洞之前沒被發現嗎?其實不是的,那 到底是什麼原因呢?原來原兇就是大家耳熟能詳 的流星!流星是流星體飛進大氣層與空氣摩擦燃 燒發光,在地球很普遍的天文現象,但是月球上 沒有大氣層,流星體會直接撞擊月球表面形成隕

2000年獅子座流星雨時發生的撞擊事件,在大型流星 雨發生時,監測月面暗部可以紀錄下不少這種景觀。

石坑,有些這類坑洞透過小型天文望遠鏡就可以 觀察到,因此有些天文同好就會利用大規模流星 雨期間尋找新坑洞,除了新坑洞以外,若流星雨 發生在上弦或下弦附近,甚至有可能觀察到月面 暗部被流星體撞擊產生的閃光。

位置,從其變化可以計算出精確的雙星軌道,配 合上光度量測,就可以知道雙星的精確質量,甚 至與我們的距離也可以更精準的計算出來,雙星 只要利用小型望遠鏡就可以進行很好的觀測,以 下介紹兩種目前常用的觀測方法。

伍、雙星

天文觀測時常常會被天氣因素所影響,其中影響最大的莫過於大氣擾動而使影像解析度下降,星星影像無法達到望遠鏡理論解析力的大小,而形成一個圓盤分布,稱為視相度,單位為角秒「(1/3600)°」。在台灣地區來說,視相度約在1"~3"之間,以最好的1"來說,不過是10公分望遠鏡的解析度,也就是說,使用20公分與10公分望遠鏡進行攝影觀測,結果相去不遠。隨著新觀測方法的使用,我們漸漸可以解決大氣擾動干擾影像品質的程度,讓攝得的影像更逼進望遠鏡的解析力。

天空中有非常多的雙星系統,雙星系統中較 亮的我們稱為主星,而較暗的就稱為伴星,伴星 相對於主星在的方向稱為方向角,而兩顆星在視 線上的來角則稱之為角距,長期觀測雙星的相對

雙星是相當常見的天體,量測雙星軌道可以測得其精確的質量

一、疊片攝影

現在的攝影器材擁有高靈敏度,低雜訊的優點,大幅縮短曝光時間,甚至可以用短時間曝光然後疊加的方式,達到相同的曝光總量。大氣擾動會讓被觀測的天體影像隨機偏移一段距離,而短時間曝光的影像可以凍結每個瞬間偏移的影像,之後再把所有影像偏移修正回來疊加,如此一來就可以消除部分大氣擾動對影像所產生的破壞,而處理出清晰的影像,量測清晰的雙星影像就可以更精確定出其角距與方向角的關係。

二、雙星干涉儀

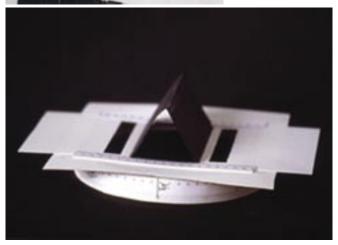
雖然說影像可以直接描述天體在天空中的 分布情形,但是產生影像誤差的機制很多,我們 量測雙星的精準度有限,如果兩顆星距離很接近 時,量測的誤差也會大的多,為了提升精確度, 可以試試光學干涉的方法。

干涉技術被視為未來最重要的天文觀測方 法,簡單來說,就是讓星光經過雙狹縫,經過雙 狹縫的星光會產生繞射條紋,若觀測的目標為雙 星,兩顆星的繞射條紋相互影響就會產生干涉現 象,而適當的調整狹縫間距與轉動角度,會讓干 涉條紋產生變化,根據條紋變化的狀況所測出雙 星的方向角與角距,由於入射面積較小,因此受 到大氣影響的程度極輕微,利用此法量測雙星, 可達到將近2倍於望遠鏡解析力的角分辨率,因 此若要做高精度的雙星觀測,雙狹縫干涉是個很 好的選擇。基本的雙狹縫的觀測很簡單,只要在 鏡筒前方放置一組可調整距離的開口即可,拍 攝雙星時就會得到一個干涉影像,轉動狹縫時會 發現干涉條紋會跟著變化。利用這個方法,20 公分的狹縫可以偵測出角距在0.25"以上的雙星 系統,相較於1.5"~3"的影像解析能力,這種

將狹縫轉動至不同角度,若被測天體爲雙星,就可以發現干涉條紋因此變化甚至消失。

方法的確可以得到更好的雙星訊息。雙狹縫的製 作也很簡單,只要幾張厚紙板就可以剪裁出雙星 干涉儀所需理想的雙狹縫。正所謂自己動手樂趣 多,不但可以做觀測,還可以試試自己美勞的手 藝。

陸、結論


好的天文觀測可說得靠相當的經驗累積,但 是有了明確的方向,可以讓觀測變得有效率且更 有價值。天文研究常常讓人望之卻步,其實大多 是因為沒有機會瞭解其有趣之處,不然就是誤會 它是個很困難的工作。台灣其實有很多品質不錯 的小型望遠鏡分布在各地,甚至有為數不少的同 好在月相條件很好的日子帶上高山觀測,這些都 是品質優良的活動天文台,做好觀測規劃的話, 都可以帶來更不一樣的觀測樂趣。

顏易程:臺灣師範大學地科所碩士班研究生

(左圖) 雙星干涉 儀。

(下圖) 厚紙板製成 的雙星干涉儀用雙 狹縫,可以量測狹 縫間距與轉動的角

